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Abstract
Aim: Projections of biodiversity scenarios often rely solely on climate change to in-
form species distribution shifts in the future. Land use projections are rarely used 
due to their unavailability and, when available, are often at coarse spatial and the-
matic resolutions, making them unsuitable to capture fine scale habitat suitability. 
This study aims to (a) show how coupled land use change (LUC) models of high the-
matic resolution (HTR) can be used in species distribution models (SDM), (b) compare 
the impacts of HTR and low thematic resolution (LTR) explanatory predictors on bio-
diversity scenarios and (c) assess the impact of species' present area of occupancy on 
the effect of thematic resolution in SDMs.
Location: Belgium
Taxon: Bumblebees (Bombus)
Methods: We compared species distribution models with 17 land use predictors 
(HTR) against models with 5 land use predictors (LTR). We modelled the distribution 
of 17 bumblebee species in Belgium projected until 2035. We examined how model 
performance, variable importance and projections of distribution change differed de-
pending on the thematic resolution of the land use predictors.
Results: Overall, HTR models performed better than LTR models. LTR models pre-
dicted greater extent per species. HTR projected a greater percentage of range gains, 
and both models projected similar losses of suitable habitat. However, the percentage 
loss and connectivity of suitable habitats varied differently for HTR and LTR models 
along a gradient of rare to common species. The HTR models projected greater loss 
of suitable areas for rare species and less loss for common species compared to LTR 
models.
Main conclusions: These results illustrate the importance of using ecologically rel-
evant explanatory variables in SDMs, particularly for rare and localized species with 
specific habitat requirements. The results also indicate the need for large-scale LUC 
projections to improve future biodiversity scenarios under climate change and to im-
prove the ability of conservationists and policymakers to use SDM projections.
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1  | INTRODUC TION

Biodiversity loss in the Anthropocene is occurring at a speed far 
greater than expected by background rates (Ceballos et al., 2015). A 
key methodology used to understand this loss and potentially avoid 
greater loss is to project the distribution of species into the future 
based on scenarios of environmental change, this is often achieved 
through a species distribution modelling (SDM) approach (Porfirio 
et al., 2014). At broad spatial scales, the assumption is that climate 
may be the main constraint to species distributions, and there-
fore, many future SDMs focus on climate change only (de Chazal & 
Rounsevell, 2009; Sinclair et al., 2010; Titeux et al., 2016). However, 
at finer resolutions, the effect of land use (LU) covariates increases; 
landscape-specific features that provide key habitat require-
ments occur at this finer scale (Luoto et al., 2007; Thuiller, Araújo, 
et al., 2004; Thuiller, Brotons, et al., 2004). This indicates a necessity 
to include land use change (LUC) projections into future biodiversity 
scenarios but this is rarely the case because of a lack of availability or 
LUC projections with coarse spatial and thematic resolution (i.e. few 
LU classes; Titeux et al., 2016; Verburg et al., 2013).

One of the important areas where LUC models can improve is 
in precision of the classification of land use by including more de-
tailed and less common LU types (De Rosa et al., 2016). This is par-
ticularly important for producing future biodiversity scenarios, as 
marginal LU categories often represent important habitats, partic-
ularly for rare and specialized species (Guisan et al., 2006; Guisan 
& Thuiller, 2005). These improvements to LUC models will develop 
more precise predictors to model biodiversity patterns in the future, 
which will impact the quality of SDMs (Austin & Van Niel, 2011).

Future models of species distribution often represent varying 
degrees of uncertainty and may differ greatly in their extent and the-
matic resolution (Alexander et al., 2017; Titeux et al., 2016). These 
differences may explain why, in many future biodiversity studies on a 
variety of organisms, there is no clear consensus on the impact of in-
cluding LUC variables. In some cases, this has not provided different 
outcomes compared to models with static LU (Martin et al., 2013). 
Examining LUC in isolation showed improvements over using static 
LU for invasion dynamics (Chytrý et al., 2012; Ficetola et al., 2010) 
and the distribution of nesting resources (Wisz et al., 2008). LUC 
may modify the distribution of species but only within a general hab-
itat suitability driven by climate change (Barbet-Massin et al., 2012; 
Préau et al., 2018). Finally, some other studies observe alternative 
distribution forecasts and greater potential loss for certain species 
with the inclusion of LUC predictors (Hughes et al., 2012; Marshall 
et al., 2018; Riordan & Rundel, 2014; Sohl, 2014).

Alongside scale and spatial resolution, thematic resolution of 
predictors is an important aspect of SDM and understanding eco-
logical patterns (Kerr & Ostrovsky, 2003; Vicente et al., 2014). In 

Mexican pines (Cord et al., 2014), corals (Rengstorf et al., 2014) 
and Chinese tree species (Liang et al., 2013) increased thematic 
resolution of predictors resulted in improved model performance. 
Therefore, one explanation for the variability in the effect of LUC 
variables in biodiversity scenarios may be the thematic resolution of 
the LUC projections available (Titeux et al., 2016). This leads to the 
hypothesis proposed by Martin et al. (2013), namely that increased 
thematic resolution is a necessity to better capture the potential ef-
fect of LUC on species trends. This hypothesis remains to be tested.

One modelling approach which allows for fine-scale and high 
thematic resolution estimations of future LUC is agent-based mod-
elling (ABM) (Rounsevell et al., 2012). However, the combination of 
an agent-based model with SDM is rarely done, partly due to differ-
ences between spatial and temporal scales used by different ABM 
and SDM models. (Parker et al., 2003). Agent-based models are 
often developed to be either very detailed for a small region (Bakker 
et al., 2015; Happe et al., 2008) or to cover large regions, losing de-
tailed information in the process (Rounsevell et al., 2012), making 
them unsuitable for producing detailed biodiversity scenarios. In 
this study, we utilize the output from ADAM (Agricultural Dynamics 
through Agent-based Modelling), which allows the modelling of a 
wide variety of agricultural LU types at a fine resolution and for a 
large spatial extent (Beckers et al., 2018), in combination with a con-
strained cellular automata-based LU model (CCA model) including 
marginal LU categories (Engelen et al., 2011). This allows for more 
relevant predictors to estimate habitat suitability of landscapes in 
SDMs.

Here, we use two sets of predictor variables from two combined 
fine-scale LUC model outputs to produce SDMs, one with low the-
matic resolution (5 classes) and one with high thematic resolution 
(17 classes), and compare the impact this has on the projected dis-
tribution of bumblebee species (genus Bombus, Apidae) in Belgium. 
Bumblebees represent an ideal study species to test this hypothesis. 
There are considerable long-term occurrence records available and, 
as a group, bumblebees have shown declines at the European scale 
(Biesmeijer et al., 2006; Carvalheiro et al., 2013; Kerr et al., 2015; 
Nieto et al., 2014; Polce et al., 2018; Rasmont et al., 2005). Previous 
research has shown that climate change alone is expected to have 
strong negative impacts for bumblebees at the European level 
(Rasmont et al., 2015). This research was expanded upon to include 
projected changes in LU alongside climate change, and the results 
suggested that for certain bumblebee species the inclusion of LUC 
variables resulted in greater negative impacts on their distributions 
in the future (Marshall et al., 2018). Here, we focus on LUC alone and 
assess the influence of the thematic resolution (detail and quantity 
of LU classes) on the projected distribution of bumblebees. For ex-
ample, more detailed agriculture land use information that separates 
late mass flowering crops, which support less-common bumblebees 

K E Y W O R D S

agent-based models, agriculture, biodiversity loss, cellular automata, grassland, range shift, 
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(Kallioniemi et al., 2017) from cereal crop landscapes which only 
support common short-tongued bumblebees (Walther-Hellwig & 
Frankl, 2000). We do not assume climate is not important for bum-
blebees but seek to test the effect of future land use thematic reso-
lution separate from climate impacts, in a Belgian context. With this 
paper, we aim to (a) show how coupled LUC models of high thematic 
resolution (HTR) can be used in SDMs, (b) compare the impacts of 
HTR and low thematic resolution (LTR) explanatory variables on bio-
diversity scenarios and (c) assess the impact of species' present area 
of occupancy on the effect of thematic resolution in SDMs.

2  | MATERIAL S AND METHODS

2.1 | Land use change models

The high thematic LU scenarios were based on the work of Engelen 
et al. (2003), Engelen et al. (2007), Engelen et al. (2011) to produce 
LU maps at a resolution of 1 ha from 2010 to 2035. The back-
ground LU scenarios used in this research were based upon three 
storylines (see Table S2.1), (a) a business as usual (BAU) storyline (a 
continuation of current trends of population growth and changes 
in population densities), (b) the Global Economy storyline (GE; high 
international cooperation, focus on private initiatives) and the (c) 
Regional Communities storyline (RC; low international cooperation, 

emphasis on public institutions). The assumptions implicit to the 
three storylines were used to produce spatially explicit LU scenarios, 
and subsequently maps, using a cellular automata-based LU model 
(CCA model) developed by Engelen et al. (2011) and based on the 
work of White et al., (1997). Each scenario resulted in a separate 
mapped projection of land use in 2035.

To create higher thematic resolution agricultural LU projections, 
we coupled the outputs of the CCA model with ADAM, an agent-
based model that simulates, on a yearly basis, the decisions of the 
farming population of a whole country (Beckers et al., 2018). The 
two models were combined based on the Belgian LUC scenarios that 
resulted from the three storylines (Table S2.1, Beckers et al., 2020). 
We used percentage cover of each LU class as the explanatory 
variable in the SDMs. We aggregated the 1 ha LU maps to a grid of 
1 × 1 km resolution with LU percentages calculated for every grid 
cell (Figure 1). A similar process was done for the parcel map with 
the agricultural LU produced by ADAM. The presence of the differ-
ent crops was translated into a percentage of the total agricultural 
land at the 1 × 1 km resolution (Figure 1). More precisely, the crop 
percentages were used to split up the arable LU class generated 
from the LU map, by defining the relative share of each crop in the 
total percentage of arable land at the 1 × 1 km resolution (Figure 1). 
The percentage of arable land was in that way further split up into 
four agricultural LU classes, namely: grains (containing the modelled 
amount of wheat, barley and maize), sugar beets, rapeseed and 

F I G U R E  1   Simplified example of the integration of the ADAM model data within the background land use framework (CCA model). Land 
use data at 1ha resolution (CCA model) and agricultural parcel data (ADAM) were combined at a 1 × 1 km resolution at the Belgian scale

CROP 2

CROP 4

CROP 3

Land use scenario

ADAM - Agricultural land use
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potatoes (Figure 1). These four classes, together with pasture, make 
up more than 90% of the Belgian agricultural landscape (Table S2.2). 
Together with the non-agricultural LU classes, there were 25 classes 
available to use as explanatory variables in the SDMs. For greater 
detail on the LUC outputs see Appendix 1 in the Supplementary 
Material and Beckers et al. (2020).

2.2 | Bumblebee collection records

This study uses bumblebee collection records from Belgium from 
2010 until 2015 as they best match the present period given the 
available LU data. The data were extracted from the Banque de 
Données Fauniques de Gembloux et Mons and are available from GBIF 
(Rasmont et al., 2019). The data represent museum collection data, 
validated and verified citizen science data, and data systematically 
sampled as part of scientific research projects. An additional dataset 
consisting of bimonthly standardized field surveys conducted under 
supervision of N.J. Vereecken (ULB) in various urban green spaces 
was obtained for the Brussels Capital Region. These data were col-
lected by netting and UV-painted pan traps every two weeks from 
early April until late July during 2015. We selected 17 bumblebee 
species with a minimum of 32 occurrences per species (Bombus 
soroeensis Fabricius, 1777) and a total of 13,602 occurrences 
(Figure S2.1).

2.3 | Bumblebee distribution modelling

In order to model the distribution of Belgian bumblebees we first 
reduced the 25 LU classes to 22: industry, commerce and services, 
infrastructure, and harbour, were assumed to represent similar an-
thropogenic habitats and were aggregated into a single class of sealed 
surfaces. We tested collinearity between predictors and no combi-
nation of variables had a Pearson's correlation >0.5 (Figure S2.2). 
The 22 remaining LU variables were categorized into six aggregated 
classes, to be used as the low thematic resolution input. They were 
classified according to Table 1 as arable, forest, grassland, perma-
nent crops, urban areas and other. These six classes were chosen so 
as to be comparable to the previous research comparing future cli-
mate and LUC models for bumblebees (Marshall et al., 2018), namely 
the ALARM scenarios of LUC at the European Level (Spangenberg 

et al., 2012). We made a further decision to remove the classes clas-
sified under ‘other’ as these represent classes, which do not fit in the 
former aggregations but otherwise have no similarity, and all have, 
apart from water, very limited coverage in Belgium. This resulted in 
two separate sets of predictor variables used for the modelling, 17 
high thematic resolution predictors and 5 low thematic resolution 
predictors. All variables were calcualted as proportions at a 1 × 1 km 
resolution.

The bumblebee collection records are spread over multiple 
years. To create a single presence map of the countrywide spread 
of the species for training the model, the occurrences of the species 
from 2010 to 2015 were combined. The species is considered pres-
ent and used for the model training dataset if it is present at least 
once in the grid cell during the period.

For all input explanatory LU variables, apart from agriculture, 
the percentage of LU of each class for every grid cell is constant 
(during the period 2010–2015), whereby the year 2010 was taken 
as the baseline. However, agricultural parcels are likely to show 
greater yearly variation. We therefore extracted the agricultural 
land use for each occurrence pertaining to the year it was collected. 
When species were found in the same area in multiple years, we 
extracted the agricultural land use from the year closest to the base-
line (2010). The baseline agricultural data were obtained from the 
Integrated Administration and Control System (IACS) dataset, which 
has parcel level crop data collected yearly by the EU (European 
Commission, 2018).

In order to project future distributions of bumblebee species in 
Belgium we used Maximum Entropy (MaxEnt) modelling software 
(version 3.4.1) (Phillips & Dudík, 2008). We created two sets of 
SDMs: (a) high thematic resolution with 17 LU explanatory variables 
(HTR) and (b) low thematic resolution with 5 LU explanatory vari-
ables (LTR).

For both the HTR and LTR SDMs we ran MaxEnt models using 
fivefold cross validation with 10 repetitions. We modified the de-
fault MaxEnt arguments so that only linear and quadratic features 
would be fitted for all species, that is, hinge, product and threshold 
features were omitted in order to avoid over parameterization of the 
model (Merow et al., 2013). As true absences are not available (it is 
not possible to accurately say that a species is not present during 
sampling), a background sample of explanatory variables of pres-
ences and absences was created (limited to 100 times the number 
of occurrences per species). This background sample is only taken 

TA B L E  1   Overview of the land use (LU) classes used in the high-resolution model and their categorization in six aggregated classes

Arable Forest Grassland
Permanent 
Crops Urban Othera 

Grain crops
Unregistered agricultural land
Oil seed rape
Sugar beet
Potatoes

Mixed forest
Deciduous forest
Coniferous forest

Pasture
Heathland
Semi-natural grassland
Wetland

Fruit trees Residential
Parks
Recreation
Sealed surfacesb 

Water
Dunes
Military
Greenhouses
Mining

aOther was not included in analyses. 
bIndustry, Commerce and services, Infrastructure and Harbour were aggregated to ‘Sealed surfaces’ due to high similarity in LU properties. 
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from areas where other bumblebee species had previously been col-
lected, referred to as a target background area. This approach ac-
counts for sampling bias by providing a more objective selection of 
grid cells that may be used to represent absence (Elith et al., 2011; 
Phillips et al., 2009) and has been shown to produce better perform-
ing models (Mateo et al., 2010).

We assessed model performance for both HTR and LTR mod-
els using the area under the curve (AUC) of the receiver operating 
characteristic (ROC) curve and the Boyce index (Di Cola et al., 2017). 
The value of the AUC is impacted by sampling size and species oc-
currence, meaning that comparison between models of different 
species is inappropriate and a single measure of acceptable model 
performance is inaccessible (Jiménez-Valverde & Lobo, 2007; van 
Proosdij et al., 2015). Therefore, a null model was used to test the 
ability of our models to capture the niche requirements of a single 
species, by testing if the model performs significantly better than 
random (van Proosdij et al., 2015; Raes & ter Steege, 2007). For 
each species, the AUC value of model with all occurrence records 
was compared against the expected AUC value of a null distribution 
based on 100 randomizations of the collection data within the tar-
get background area. The null models were run with the exact same 
MaxEnt arguments as the actual models. A model is performing well 
if it has an AUC value higher than a one-sided 95% confidence in-
terval of the null distribution of AUC values. This means the model 
indicates that the bumblebees had specific niche requirements that 
were captured by the predictors. Variable importance was measured 
as the percentage increase in gain as the predictors are added to the 
model (Phillips et al., 2006). For each variable, we also calculated a 
simple approximation of the general direction of the effect of each 
important variable (importance > 1%) to check if aggregated classes 
have similar effects as their individual components. We examined 
the relationship between a single predictor and the probability of 
presence of each bumblebee species, a Pearson's correlation coeffi-
cient greater than 0.7 was considered positive, lower than −0.7 was 
regarded as negative.

Each of the 50 MaxEnt model runs for the two sets of predic-
tors was projected onto the three future LUC scenarios. To create 
binary presence/absence maps based on the habitat suitability maps 
for each species we took the mean habitat suitability of the two best 
(highest AUC) runs from each cross-validation fold and selected a 
suitability threshold by looking at the largest threshold that would 
leave out a maximum of 10% of the occurrence records. This method 
is stricter and less affected by extreme localities (Radosavljevic & 
Anderson, 2014) and is also robust to problems using specificity in 
presence only modelling (Merow et al., 2013). These binary pres-
ence/absence maps were used to analyse the range changes per 
species.

2.4 | Statistical analysis of distribution change

In order to assess the impact of HTR or LTR models on the projected 
distributions of Belgian bumblebees we looked at four different 

measures of comparison between 2035 projections and present 
day projections: (a) percentage loss and (b) gain in range, (c) change 
in number of separate patches and (d) change in landscape division 
index. Percentage loss and gain were measured as the total number 
of cells lost or gained between the present and future projections 
divided by the number of cells occupied in the present. The two 
range change metrics were calculated using the ‘Biomod2’ pack-
age in R (version 3.3.7; Thuiller et al., 2019). In order to approximate 
connectivity and isolation between suitable habitats we measured 
the number of patches lost or gained per species and the division 
index. Change in number of patches is a count of all separate areas 
of connected (8-connected) occupied cells. The division index is the 
probability that two randomly chosen suitable habitat cells are not 
in the same patch, the division index increases as the proportion 
of suitable habitat in the landscape decreases and the size of suit-
able habitat patches also decreases (McGarigal, 2015). Both metrics 
were calculated using the ‘FragStats’ package in R (version 0.3.1; 
Hesselbarth et al., 2019).

Using restricted maximum likelihood, we fit multivariate mixed 
effects models to assess how each of the four measures (response 
variables) were impacted by thematic resolution of the SDM pre-
dictors. We also included scenario as a fixed effect. Furthermore, 
the ordered rank of occurrence values per species (Figure S2.1) was 
included as a fixed effect, to test the hypothesis that the increase in 
thematic resolution would affect rare species more than common 
species. Species name was included as a random effect because of 
the dependency between measurements for the same species and 
because the inherent variation between species was not the target 
of the analysis. We conducted model selection on each of the four 
mixed effects models selecting the models with the lowest Bayesian 
information criteria (BIC). All models were fit with a Gaussian distri-
bution. Percentage gain was first log-transformed in order to meet 
the assumptions of a Gaussian distribution.

3  | RESULTS

3.1 | Model performance

All models performed better than the 95% quantile of null models. 
However, there was considerable variation in model performance 
(both AUC and Boyce index) across the different species (Table 2). For 
all species AUC values were clearly higher (mean difference = 0.1, 
p < 0.0001) for the HTR models than the LTR models (Table 2).

3.2 | Variable importance

The importance values of the different predictors included within 
the two modelling approaches were consistent with the hypothesis 
that we observe different effects by separating LU classes. Firstly, 
the results showed that the importance of the predictors in each 
simplified class was not evenly distributed and certain predictors 
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from the HTR models were far more important on average for 
bumblebee species than others. Secondly, we observed that when 
grouped together into the predictors for the LTR models, the impact 
of the predictors on the species (whether they generally positively 
or negatively influenced habitat suitability as they increase) was not 
representative of the impact of the separated predictors.

For the arable class, the highest average variable importance 
was found for unregistered agricultural land (13%; Figure 2a). 
Unregistered land had a positive impact on more species (26% of 
species) than the aggregated class (16%) and fewer negative impacts 
(32% versus 42%; Figure 2b). The other four arable classes showed 
lower average importance. Grain and potatoes were mostly negative 
while sugar beet and oilseed rape had little overall contribution to 
species distribution. The forest class differed least in variable impor-
tance between LTR and HTR models. In general, the same overall av-
erage importance of the single predictor (32%) was shared between 
the three classes, coniferous, mixed and deciduous forest, in the 
HTR model (11%, 9% and 7%). Mixed forest had the same positive 
effect as the aggregated forest class (47% of species), but a limited 
negative impact in comparison (11% and 37% of species). The ag-
gregated grassland class showed the most differences between the 
LTR and HTR. Wetland and heathland occupy small areas in Belgium 
but had high average variable importance (both 8%), which together 
was greater than the importance of the aggregated grassland class 

(13%). Both wetland (42% of species) and semi-natural grassland 
(32% of species) had positive impacts on many bumblebees. Semi-
natural grassland was also the only class with no negative impacts. 
Heathland is both positive and negative for 21% of species.

Permanent crops showed little difference as fruit trees make up 
all permanent crops used in the analysis. However, the overall im-
portance of fruit trees was far lower indicating an impact of model 
complexity. Finally, a large part of the importance of the urban clas-
sification used in the LTR models (25%) was indicated by residential 
areas (10%). The other three classifications had less importance on 
average for bumblebees. The general impact of urban classes also 
changed considerably when split, we see that residential and park 
areas were positive for some (16% and 26% of species) and nega-
tive for others (32% and 26% of species) while sealed surfaces and 
recreation areas were almost exclusively negative (68% and 53% of 
species) or neutral. Full details of which species were positively and 
negatively affected by each LU class can be seen in Table S2.3.

3.3 | Projection differences between HTR and 
LTR models

We examined the impact of high thematic resolution explanatory LU 
variables for modelling the future distribution of Belgian bumblebee 

TA B L E  2   Average AUC (area under the curve) and Boyce index value per species for high (HTR) and low (LTR) thematic resolution MaxEnt 
species distribution models for Belgian bumblebees

Species

High thematic resolution land use Low thematic resolution land use

Full model Cross-validation Full model Cross-validation

AUC 95% Null AUC Boyce Index AUC 95% Null AUC
Boyce 
Index

B. soroeensis 0.95 0.65 0.94 ± 0.02 0.71 ± 0.11 0.73 0.68 0.69 ± 0.06 0.56 ± 0.24

B. jonellus 0.92 0.70 0.91 ± 0.02 0.9 ± 0.05 0.86 0.76 0.86 ± 0.02 0.94 ± 0.03

B. magnus 0.91 0.70 0.9 ± 0.07 0.86 ± 0.04 0.85 0.72 0.84 ± 0.03 0.83 ± 0.05

B. bohemicus 0.89 0.63 0.77 ± 0.11 0.61 ± 0.22 0.77 0.67 0.78 ± 0.06 0.71 ± 0.07

B. cryptarum 0.81 0.60 0.7 ± 0.09 0.81 ± 0.17 0.69 0.59 0.66 ± 0.11 0.79 ± 0.1

B. rupestris 0.79 0.58 0.75 ± 0.03 0.86 ± 0.04 0.72 0.67 0.74 ± 0.05 0.84 ± 0.06

B. ruderarius 0.76 0.60 0.67 ± 0.07 0.85 ± 0.08 0.66 0.60 0.68 ± 0.08 0.86 ± 0.05

B. sylvestris 0.76 0.61 0.76 ± 0.03 0.93 ± 0.03 0.59 0.55 0.57 ± 0.05 0.66 ± 0.17

B. lucorum 0.75 0.59 0.67 ± 0.08 0.91 ± 0.04 0.68 0.61 0.68 ± 0.02 0.8 ± 0.03

B. vestalis 0.75 0.60 0.69 ± 0.05 0.85 ± 0.04 0.66 0.58 0.64 ± 0.08 0.78 ± 0.07

B. campestris 0.68 0.57 0.64 ± 0.02 0.96 ± 0.02 0.62 0.57 0.61 ± 0.04 0.83 ± 0.09

B. terrestris 0.62 0.53 0.61 ± 0.02 0.89 ± 0.07 0.59 0.55 0.58 ± 0.01 0.85 ± 0.06

B. hypnorum 0.62 0.56 0.62 ± 0.01 0.77 ± 0.12 0.57 0.54 0.57 ± 0.01 0.77 ± 0.11

B. lapidarius 0.61 0.56 0.61 ± 0.02 0.78 ± 0.11 0.57 0.56 0.56 ± 0 0.42 ± 0.27

B. pratorum 0.60 0.54 0.58 ± 0.01 0.87 ± 0.09 0.56 0.54 0.56 ± 0.01 0.45 ± 0.32

B. pascuorum 0.59 0.54 0.59 ± 0.02 0.7 ± 0.13 0.53 0.53 0.53 ± 0.02 0.34 ± 0.27

B. hortorum 0.58 0.53 0.56 ± 0.02 0.82 ± 0.12 0.55 0.52 0.52 ± 0.03 0.74 ± 0.15

Note: Full model and null model include all occurrence records. 95% Null shows the 95% quantile of 100 randomized null models of the same number 
of occurrence records in the same background space. Cross validation shows the mean and standard deviation AUC and Boyce index of the two best 
models from each of the five randomized cross validation folds (10 models).
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species using multivariate regression models. The best regression 
models, as chosen by BIC, for each of the four response variables 
had a similar fixed effects structure. All best models included model 
resolution, and two included the interaction with occurrence rank 
(percentage loss and change in division index) as explanatory vari-
ables. In no case did the scenario have a significant impact on the 
distribution change measure.

We observed statistically clear differences between HTR and 
LTR projections when analysing the component measures of distri-
bution change. Specifically, percentage loss and gain of suitable grid 
cells were projected to be higher under HTR models (Figure 3a,b; 
loss, mean difference = 9.7% ± 1.9, t = −5.1, 95% CI around esti-
mate = 5.9%–13.4%; gain, mean difference = 13.3% ± 1.5, t = −9.0, 
95% CI = 10.4%–16.3%; gain). Percentage loss was lower for more 

F I G U R E  2   Variable Importance of land use (LU) variables. (a) Average variable importance and standard error for all variables, grouped 
by classification. (b) Proportion of bumblebee species for which the variable has a positive or negative overall correlation (>0.7 or <−0.7 
Pearson's correlation coefficient), n = 17 (species with correlation <0.7 and >−0.7 are not shown). Black outline indicates the class used in 
the lower thematic resolution modelling. Percentage values in brackets indicate the percentage that the high thematic land use classification 
makes up of the total aggregated lower thematic resolution classification, for example, Grain crops represents 62% of Arable land use.
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common species under HTR models compared to LTR models 
(Figure 3a). However, for percentage loss there was a statistically 
influential interaction between occurrence rank and model the-
matic resolution, HTR models showed a steeper negative trend, with 
greater loss predicted for rare species and less loss predicted for 
common species compared to LTR models (Figure 3a; β = 1.1 ± 0.2; 
95% CI = 0.75–1.48. Furthermore, under LTR present range size was 
larger for all species (Figure S2.3).

The HTR models project a decrease in the number of patches of 
suitable habitat, whereas LTR models project increases (Figure 3c; 
mean difference: 122 ± 16, t = 7.6, 95% CI = 90–154). Mean patch 
area is projected to increase for HTR models (mean: 629 ha) and de-
crease for LTR models suggesting the loss of small patches for HTR 
models and increased splitting of larger patches for LTR models 
(mean: −1,414 ha; see Table S2.4 for full details). For HTR models, 
the division index is projected to stay the same for rare species and 
decrease for more common species. For LTR models the division 

index is projected to remain unchanged for rare species but to in-
crease for common species. This is demonstrated by a statistically 
clear interaction between occurrence rank and thematic resolution, 
the relationship shifts from negative to positive from HTR to LTR 
models (β = 1.04, t = 3.14, 95% CI = 0.39–1.69; Figure 3d). For full 
details on the multivariate mixed effects models and the underlying 
data per species see Table S2.5 and Figures S2.4–S2.6.

4  | DISCUSSION

We observed statistically clear differences in model performance, 
variable importance and effect, and distribution changes for Belgian 
bumblebees when comparing SDMs with high thematic resolution 
LUC predictors and low thematic resolution LUC predictors. This 
supports the hypothesis that increased thematic resolution is re-
quired to better capture the potential effect of LUC on future trends 

F I G U R E  3   Fitted mixed effects model predictions for projected distribution changes of Belgian bumblebees. (a) Percentage range loss, 
number of cells occupied in present no longer occupied in 2035 divided by total number of cells occupied in present (best model includes the 
interaction between rank of occurrence and model resolution as fixed effects). (b) Percentage range gain, number of cells occupied in 2035 
that were not occupied in the present divided by total number of cells occupied in present (best model includes model resolution as the fixed 
effect). (c) Change (Δ) in number of patches, increase or decrease in number of unique habitat patches per species between the present and 
2035 (best model includes model resolution as the fixed effect). (d) Change in (Δ) division index, measure of the probability of two random 
suitable habitat cells not coming from the same patch (best model includes the interaction between rank of occurrence and model resolution 
as fixed effects). Model thematic resolution is either high (HTR; grey) or low (LTR: black). Rank of occurrence is the ordered ranking of each 
species rare to common based on the number of occurrence records used in the species distribution models. All models were first fit with 
the model structure γ = Resolution*Rank of Occurrence + Scenario + (1|Species) and for each response variable the best model was chosen 
using Bayesian Information Criteria (BIC)
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of bumblebee species. These results indicate that an absence of de-
tailed LU classes could result in inaccuracies when projecting sce-
narios of biodiversity changes.

Land use change will affect biodiversity in the future 
(Newbold, 2018), therefore efforts should be made to produce the 
best models to measure these potential impacts. One such way is 
with LUC models that provide comprehensive predictors of relevant 
LU types (Verburg et al., 2013), to use as predictors in SDMs. Our 
analyses involved the coupling of two distinct LUC models to pro-
vide detailed classes of LU for the total area of Belgium and were 
able to provide outputs relevant for modelling the distribution of 
biodiversity in the future. We showed the added value of models 
such as ADAM (Beckers et al., 2018) outside their own research con-
text. The possibility to integrate agent-based models of farmer de-
cision-making and socio-economic drivers of LUC at the parcel level 
provides unprecedented detail for scenarios of biodiversity change.

There was a clear distinction in SDM projections when splitting 
aggregated LU classes from classifications often used in biodiversity 
scenarios (Spangenberg et al., 2012; Titeux et al., 2016). Coarse clas-
sification does not allow causal inference on the LU, while 17 classes 
provide a greater scope to directly attribute LU classes to species 
presence (Thuiller, Araújo, et al., 2004; Thuiller, Brotons, et al., 2004). 
Not only does model performance improve, supporting already ob-
served results in SDMs (Cord et al., 2014; Liang et al., 2013; Nuse 
et al., 2015; Rengstorf et al., 2014), but we also observed that split-
ting aggregated classes resulted in a disparity between the impacts 
on species' future distributions. Certain sub-classes appear to have a 
different overall effect on the habitat suitability predictions for spe-
cies than the aggregated LTR class does. For example, semi-natural 
grassland, which was exclusively positive for bumblebees, should 
be distinguished from more intensive agricultural grasslands. Semi-
natural grasslands are known to be habitats with high plant (Pykälä 
et al., 2005) and insect diversity (Duelli & Obrist, 2003). However, 
the level of detail of LUC predictors used here can still be improved 
and there is an absence of predictions related to actual on the ground 
LU management (Titeux et al., 2016). For example, increased detail 
regarding management decisions on grasslands, such as grazing in-
tensity and mowing, would also influence projected suitability for 
biodiversity (Söderström et al., 2001; Tanis et al., 2020). Heathland 
has a relatively limited extent in Belgium but has a comparatively 
high importance and was both limiting and facilitating for different 
species of bumblebees. Heathland is likely to be limiting to those 
bumblebee species not adapted to the specialized feeding resources 
present in these habitats (Moquet et al., 2016). However, for those 
that are specialized, for example, B. magnus Vogt, 1911, and B. jonel-
lus Kirby, 1802, (Goulson et al., 2005), it is the most relevant class to 
determine present and future distributions. When aggregated, the 
distribution of these species will be incorrectly estimated.

The results also reiterate the importance of urban areas for 
certain common bumblebees (Baldock et al., 2015; Hernandez 
et al., 2009). The benefits of the CCA model aspect of the full LUC 
model are that land demands can be applied to potential population 
growth and policy decisions to determine where new housing and 

residential areas are likely to be in the future (White et al., 1997). In 
terms of the bumblebee species found regularly in urban gardens, 
this is a great potential predictor. Urban areas are not equal in their 
suitability and considering sealed surfaces and parks as the same 
LU is not representative. Therefore, an example of a conclusion that 
could be drawn from the HTR results is that increasing inner city 
green areas and encouraging residential gardens with appropriate 
resources (Cane, 2005), managed for biodiversity, may be beneficial 
for bumblebees in the future, a conclusion that could not be drawn 
from the LTR models. The distinction between arable classes, while 
having a more moderate impact than the other classes, still shows 
some clear differences. A more useful categorization for agricultural 
parcels would likely include both use and management, such as the 
intensity of the agriculture practices present at a site. For example, 
organic agricultural practices have been shown to stabilize species 
richness of bumblebees (Carrié et al., 2018). This is illustrated by 
unregistered agricultural land, which is the most important sub-
class and potentially has a high ecological value (Beilin et al., 2014). 
Unregistered agricultural land represents fields that are not regis-
tered with the government for income support. They represent land 
used for low-intensity hobby farming as well as unmanaged aban-
doned land. Low intensity and abandoned agricultural land have 
high potential as hotspots of diversity and as more farmers are en-
couraged to abandon land margins this may represent an important 
aspect of future LUC (Beilin et al., 2014; Kuemmerle et al., 2013). 
Agriculture in Europe is perhaps at a turning point (Pe'er et al., 2019). 
Future agroecological practices, including the restoration of an eco-
logical network and new crop choices and management, will likely 
have a positive impact on many pollinator species like bumblebees 
(Varah et al., 2020).

We observed a clear difference between projections of future 
species' distribution patterns between HTR and LTR models. It is well 
known that LU classes are important to understand the distribution 
of bumblebees in the past, present and future (Aguirre-Gutiérrez 
et al., 2017; Marshall et al., 2018; Vray et al., 2019). This is also in 
line with best practice for SDMs. Araújo et al. (2019) specifically 
stress the importance of considering relevant environmental and 
biotic variables and indicate that researchers should hold back on 
projecting biodiversity if dynamic, relevant predictors are unavail-
able. One of the key impacts of LTR models, which in turn affected 
the projected distribution shifts, was the predicted extent of each 
species in the present day. Greater potential increases and decreases 
in suitable habitat under HTR models suggest that a more accurate 
present-day representation of extent from HTR models as opposed 
to a likely over-estimation with LTR models alongside a more com-
plex mosaic of habitat conditions increases the probability of species 
shifting in changing landscapes. These results are also likely linked 
to model complexity, which is higher in the high thematic resolution 
models and will result in a stronger fit between species and the land 
use predictors. This is a characteristic of increased thematic resolu-
tion and the reason why we limited complexity in other areas of the 
models, by using minimal features (linear and quadratic only) in the 
MaxEnt models and maintaining all other model options the same. 
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There is an inherent uncertainty in future projections of biodiver-
sity (Thuiller, 2004); however, due to the ecological knowledge of 
the habitat requirements and preferences of some bumblebees, we 
can be reasonably confident that HTR models are performing bet-
ter at capturing the relevant niche of bumblebees (Vray et al., 2019; 
Williams et al., 2007).

The final aim of this research was to highlight whether species 
area of occupancy impacted the relationship between LTR and HTR 
models. Rarer and localized bumblebee species are often those 
with the most specific habitat requirements regarding their nesting 
and feeding resources (Goulson, 2010; Potts et al., 2005; Svensson 
et al., 2000). We observed that the relationship between predictions 
of loss for rare to common species are more extreme for HTR mod-
els. The results suggest that due to the over-estimation of suitable 
habitat, LTR models are likely to incorrectly predict loss for those 
species whose specific requirements are not captured by LTR pre-
dictors. This supports results found for Mexican tree species where 
the necessity for detailed LU varied by species and was dependent 
on the distinctiveness of the species' habitat requirements (Cord 
et al., 2014).

One of the most striking results is the apparent separate im-
pact of the two modelling procedures on the future connectivity 
between suitable habitat patches. We observed that LTR models 
predict on average a large increase in number of patches, whereas 
HTR predict a large decrease. Due to the changes in patch area the 
results suggest that under HTR, species are losing small suitable 
habitat patches while under LTR large areas of suitable habitat are 
being split. We also observed that, under LTR models, common spe-
cies are predicted to increase in division whereas under HTR, they 
are projected to decrease. This has substantial implications, as the 
number of patches is related to connectivity between populations 
and potential future dispersal and the ability to track other envi-
ronmental changes and move into future suitable habitat (Pearson 
& Dawson, 2003). Therefore, predicted decreases in the number of 
patches may provide indications of useful areas to protect and con-
serve where populations may be able to connect. Furthermore, agri-
cultural LUC models often have the greatest amount of uncertainty 
compared to other landscapes (Alexander et al., 2017). Therefore, 
the change in number of patches and connectedness of suitable hab-
itat may also be due to the increased model complexity and associ-
ated uncertainty of the improved LUC models.

It is important to note that the main aim of this research was to 
assess the importance of high thematic resolution LU maps in SDM. 
Other important decisions need to be made for any SDMs being 
produced for decision-making, including the use of climate change, 
soil characteristics and biotic interactions as predictors (Araújo 
et al., 2019; Wisz et al., 2012). The addition of these variables will 
also likely improve model performance for common habitat gener-
alists which show here lower model performance. The impact of cli-
mate, although known to be an important parameter for bumblebees 
(Rasmont et al., 2015), was not included. This means the resulting 
projections are not representative of future ranges but specifically 
indicate the impact of LUC at a high resolution. To accurately model 

the impacts of high-resolution LUC alongside climate change would 
require collection records from the whole range of the species with 
correspondingly high-resolution LUC data, which are currently un-
available (Thuiller, Araújo, et al., 2004; Thuiller, Brotons, et al., 2004; 
Titeux et al., 2016). As more detailed LUC models begin to be pro-
duced at larger scales, research including climate change will result 
in projections more applicable to and useful in policy-making pro-
cesses (Porfirio et al., 2014). We hypothesize that, like the impacts 
of climate change when adding LUC (Marshall et al., 2018), higher 
thematic resolution LUC would provide more accurate projections of 
range change, but within the broader climate and habitat envelopes 
of the species.

In summary, the implications of using only LTR LUC predictors 
in SDMs could be wide ranging. The evidence here suggests that 
in the absence of HTR LUC variables using those with a coarse the-
matic resolution may not just lead to over predictions. Indeed, they 
may show contrasting trends, which has the potential to negatively 
impact any conservation decision made after observing the mapped 
projections (Araújo et al., 2019; Porfirio et al., 2014). Higher resolu-
tion predictors appear to provide a more accurate representation of 
the present-day habitat suitability, capturing more specialized hab-
itat types occupied by rare and localized species. These specialized 
habitats can often be protected and managed. When producing bio-
diversity scenarios, particularly those likely to be used for conser-
vation decision-making, the greatest available detail should be used 
at all stages of the modelling process. Therefore, a concerted effort 
should be made to produce LUC models of ecological significance, 
using wide-ranging techniques, to produce relevant, detailed predic-
tors for use in modelling future species distribution patterns.
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